Stochastic model for In-Host HIV dynamics with Therapeutic intervention

Rachel Waema Mbogo
CARMS-Strathmore University
&
Livingstone S. Luboobi
Makerere University
&
John W. Odhiambo
CARMS-Strathmore University

Arusha - Tanzania
Outline

• Brief overview
• Background to the Research problem
• Methodology
• Expected Outcome/Result
Brief overview

• Why model HIV/ AIDS?
• Interaction of the HIV virus and the immune system of an infected person
• Why stochastic models
Background to the research Problem

• Eradication of the HIV virus is not attainable with the current available drugs and now the focus is the management and control of the virus progression in an infected person.
Methodology

The Approaches include

• Developing stochastic models for the study of the In-host virus dynamics.
• Formulating a model for the disease management with treatment therapies.
• Analyzing the models in effect of combined treatment
HIV – CD4+ cells Interaction dynamics

Source: Rachel (2012)
<table>
<thead>
<tr>
<th>Event</th>
<th>Population components ((X,Y,V)) at (t)</th>
<th>Population components ((X,Y,V)) at ((t, t + \Delta))</th>
<th>probability of transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production of uninfected cell</td>
<td>((x - 1, y, v))</td>
<td>((x, y, v))</td>
<td>(\lambda \Delta t)</td>
</tr>
<tr>
<td>Death of uninfected cell</td>
<td>((x + 1, y, v))</td>
<td>((x, y, v))</td>
<td>(\delta (x + 1)\Delta t)</td>
</tr>
<tr>
<td>Infection of uninfected cell</td>
<td>((x + 1, y - 1, v + 1))</td>
<td>((x, y, v))</td>
<td>(\beta(x + 1)(v + 1)e^{-\rho r}\Delta t)</td>
</tr>
<tr>
<td>Production of virons from the bursting infected cell</td>
<td>((x, y + 1, v - 1))</td>
<td>((x, y, v))</td>
<td>(\kappa N(y + 1)\Delta t)</td>
</tr>
<tr>
<td>Introduction of Virons due to re-infection because of risky behaviour</td>
<td>((x, y, v - 1))</td>
<td>((x, y, v))</td>
<td>(\gamma \Delta t)</td>
</tr>
<tr>
<td>Death of virons</td>
<td>((x, y, v + 1))</td>
<td>((x, y, v))</td>
<td>(\mu(v + 1)\Delta t)</td>
</tr>
</tbody>
</table>

Table 1: transitions in HIV – CD4 + cell interactions
The Master equation for Virus-Host interaction

\[P'_{x,y,v}(t) = -\{\lambda + \delta x + \alpha \beta xv + \mu v + \kappa y + \gamma\} P_{x,y,v}(t) + \lambda P_{x-1,y,v}(t) + \delta(x+1)P_{x+1,y,v}(t) + \beta(x+1)(v+1)e^{-\rho\tau} P_{x+1,y-1,v+1}(t) + N\kappa(y+1)P_{x,y+1,v-1}(t) + \gamma P_{x,y,v-1}(t) + \mu(v+1)P_{x,y,v+1}(t) \]
The Lagrange Partial Differential Equation

\[
\frac{\partial G}{\partial t} = \left\{(z_1 - 1)\lambda + (z_3 - 1)\gamma\right\}G + (1 - z_1)\delta \frac{\partial G}{\partial z_1} + (Nz_3 - z_2)\kappa \frac{\partial G}{\partial z_2} \\
+ (1 - z_3)\mu \frac{\partial G}{\partial z_3} + \beta (e^{-\rho \tau} z_2 - z_1 z_3) \frac{\partial^2 G}{\partial z_1 \partial z_3}
\]
Moments of $X(t)$, $Y(t)$ and $V(t)$ from the pgf

\[
\frac{\partial}{\partial t} E[X(t)] = \lambda - \delta E[X(t)] - \beta E[X(t)V(t)] \\
\frac{\partial}{\partial t} E[Y(t)] = -\kappa E[Y(t)] + \beta e^{-\rho t} E[X(t)V(t)] \\
\frac{\partial}{\partial t} E[V(t)] = \gamma + N\kappa E[Y(t)] - \mu E[V(t)] - \beta E[X(t)V(t)]
\]

With $x(t) = E(X(t))$, $y(t) = E(Y(t))$ and $v(t) = E(V(t))$, Where the variables $X(t)$ and $V(t)$ are independent
Effects of treatment therapy

Source: Rachel (2012)
Model incorporating treatment therapies

\[
\frac{\partial G}{\partial t} = \{(z_1 - 1)\lambda + (z_3 - 1)\gamma\}G + (1 - z_1)\delta \frac{\partial G}{\partial z_1} + (\omega Nz_3 - z_2)\kappa \frac{\partial G}{\partial z_2}
\]

\[
+ (1 - z_3)\mu \frac{\partial G}{\partial z_3} + \alpha \beta e^{-\rho t}(z_2 - z_1z_3) \frac{\partial^2 G}{\partial z_1 \partial z_3}
\]
Probability of Virus clearance

\[
\frac{\partial}{\partial t} P(V = 0, t) = \frac{\partial}{\partial t} \left(\frac{1}{0!} \frac{d^0 G}{dz_1^0} \right) \bigg|_{z_1 = z_2 = 1, z_3 = 0} \partial G(1, 1, 0; t) = \frac{\partial}{\partial t} \partial t = \gamma - \omega N \kappa E[Y(t)] + \mu E[V(t)] + \beta E[X(t)V(t)]
\]
Expected outcome

• Probability distributions of the virus and cell reservoirs with combined treatment therapy.
• Moments of the random variables
• Probability of virus clearance
Thank you